Diagnostic approach to fever of unknown origin

Steven Vanderschueren
General Internal Medicine
University Hospitals Leuven
Belgium
FUO

• A Case
• Definitions
• Causes
• Diagnostic Approach
• Prognosis
• Conclusion
♀, 52 j

- Nurse in a nursery home
- Peaking t° to 39.3°C, >3w
- Fatigue, malaise, weight loss, epigastric discomfort
- Refractory to antibiotics (incl. cefuroxim)
♀, 52 j

- CT: multiple subcm hypodens lesions liver, spleen, left kidney
- Thoracoabdominal adenopathies
♀, 52 j

- Laparoscopic liver biopsy: multiple liver lesions, spared peritoneum, APath: necrotising granuloma’s, giant cells
- Cultures, auramin staining, tuberculin test: negative
- 6 we tuberculostatics: persistent fever, weight loss (16 kgs), progressive lesions in liver and spleen
♀, 52 j

- PCR Bartonella henselae: positive
- Serologic confirmation
- Complete remission with azithromycin
- 6 months before presentation: cat bite
DEFINITION OF FUO

From the original to the contemporary
Not every fever with unclear cause or source = FUO!

- **Ongoing and enigmatic febrile illnesses**

- “These cases are encountered once or twice a month at teaching hospitals.”

FUO: 1961 definition

1. Illness >3 weeks.
2. Fever >38.3°C (>101°F), on several occasions.
3. Diagnosis uncertain after 1 week of study in hospital.

FUO: 1961 definition

1. **Illness >3 weeks.**
 → Tends to eliminate self-limited infectious diseases.

2. **Fever >38.3°C (>101°F), on several occasions.**
 → Eliminates the entity of ‘habitual hyperthermia’

3. **Diagnosis uncertain after 1 week of study in hospital.**
 → Time interval to allow completion of laboratory studies (e.g., bacteriologic and serologic tests, radiologic examinations, skin tests,...)
FUO definition by Durack and Street

- **Classical FUO**
 - Duration >3 weeks
 - Fever ≥38.3°C
 - Diagnosis uncertain despite appropriate investigations, after ≥3 outpatient visits or ≥3 days in hospital
- **Nosocomial FUO**
- **Neutropenic FUO**
- **HIV-associated FUO**

D.T. Durack & A.C. Street.
• **Nosocomial FUO**
 • **Infections** (respiratory, urinary, wound, catheter, sinusitis, *Clostridium difficile*, ...)
 • **Drug fever**

• **Neutropenic FUO**
 • **Infections** (bacterial, fungal, viral, parasitic)
 • **Malignancy**

• **HIV-associated FUO**
 • **Infections**
 • **Drug fever**
 • **Malignancy**
• Nosocomial FUO
 • Infections (respiratory, urinary, wound, catheter, sinusitis, Clostridium difficile, ...)
 • Drug fever

• Neutropenic FUO
 • Infections (bacterial, fungal, viral, parasitiae)
 • Malignancy

• HIV-associated FUO
 • Infections
 • Drug fever
 • Malignancy
CONTEMPORARY DEFINITION OF CLASSICAL FUO

1. Illness of >3 weeks duration
2. Temperature ≥38.3°C - or lower with lab signs of inflammation - on several occasions.
3. No diagnosis after initial diagnostic investigation
4. Exclusion of nosocomial fever and severe immunocompromise
MINIMUM DIAGNOSTIC EVALUATION

to qualify as FUO

Comprehensive history (including travel history, risk for venereal diseases, hobbies, pet animals and birds, etc.)

Comprehensive physical examination (including temporal arteries, rectal digital examination, etc.)

Routine blood tests (CBC including differential, ESR or CRP, electrolytes, renal and hepatic tests, CK and LDH)

Microscopic urinalysis

Cultures of blood, urine other normally sterile compartments if indicated, e.g. joints, pleura, cerebrospinal fluid

Chest radiograph

Abdominal (including pelvic) ultrasonography

Antinuclear and antineutrophilic cytoplasmic antibodies, rheumatoid factor

Tuberculin skin test

Serological tests directed by local epidemiological data

Further evaluation directed by abnormalities detected by above test; e.g.

- HIV antibodies depending on detailed history

- CMV-IgM and EBV serology in case of abnormal differential WBC count

- Abdominal or chest helical CT scan

- Echocardiography in case of cardiac murmur

- etc.

D Knockaert J Int med 2003;253:263
Causes of FUO

- Diagnostic categories
- Common causes
- Subpopulations
Knowledge of the causes and the spectrum

“FUO defies simplification. Reported causes exceed 200, and fall into diverse sub-speciality categories. There are no algorithms and few clues that reliably suggest or exclude particular diagnoses. The clinician must rely on very careful evaluation and detailed knowledge of a wide variety of diseases.”

FUO: diagnostic categories

1. Infections
2. Malignancies
3. Non-infectious inflammatory disorders (NIID)
 a) Connective tissue diseases
 b) Vasculitides
 c) Granulomatous disorders
4. Miscellaneous disorders
5. Undiagnosed cases.
"Most patients with FUO are not suffering from unusual diseases; instead they exhibit atypical manifestations of common illnesses."

Most common causes

14 disorders ~ 2/3 of the diagnoses

1. Infections:
 • Endocarditis
 • Tuberculosis
 • Abdominal abscesses
 • EBV/CMV infections

2. Malignancies:
 • Lymphoma
 • Leukemia

3. Non-infectious inflammatory disorders
 • Adult-onset Still disease
 • Systemic lupus erythematosus
 • Polymyalgia rheumatica - giant cell arteritis
 • Sarcoidosis
 • Crohn disease

4. Miscellaneous disorders
 • Habitual hyperthermia
 • Drug fever
 • Subacute thyroiditis

Diagnostic spectrum

Depends on:
- Time
- Region
- Age
- Fever pattern (episodic vs continuous)
Time matters: the spectrum evolves
Are we losing it?
Apparent loss of diagnostic yield

Figure 1. Percentages of patients with febrile ECI without definitive diagnosis, shown per decade between 1960 and 2007: 1960-1969; 1970-1979; 1980-1989; 1990-1999; 2000-2006. The increase in percentage is partly explained by changes in the definition of febrile ECI (excluding immunocompromised patients and including outpatient cases), partly due to improved diagnostic techniques (the diagnosis is usually made within 3 weeks) and possibly also due to a more waiting attitude which has been known to result in a better prognosis for patients with febrile ECI without a definitive diagnosis.

C.P. Bleeker-Rovers and J.W.M. van der Meer
Region matters:
Causes of FUO in adults

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Country</th>
<th>Number</th>
<th>Causes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Belgium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Vanderschueren et al.</td>
<td></td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Zamir et al</td>
<td>Israël</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Baicus et al</td>
<td>Romania</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Öztürk</td>
<td>Turkey</td>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

Causes (%)

<table>
<thead>
<tr>
<th></th>
<th>Belgium</th>
<th>Israël</th>
<th>Romania</th>
<th>Turkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections</td>
<td>14</td>
<td>54</td>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>Tumours</td>
<td>10</td>
<td>7</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>NIID’S</td>
<td>20</td>
<td>2</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Undiagnosed</td>
<td>44</td>
<td>32</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>
Age matters

<table>
<thead>
<tr>
<th>Category</th>
<th>Elderly (n = 204)</th>
<th>Young (n = 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tuberculosis</td>
<td>20 (10)</td>
<td>4 (3)</td>
</tr>
<tr>
<td>- Abscess</td>
<td>25 (12)</td>
<td>6 (4)</td>
</tr>
<tr>
<td>- Endocarditis</td>
<td>14 (7)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>- Viral infections</td>
<td>1 (0.5)</td>
<td>8 (5)</td>
</tr>
<tr>
<td>Malignancies</td>
<td>38 (19)</td>
<td>8 (5)</td>
</tr>
<tr>
<td>NIID</td>
<td>57 (28)</td>
<td>27 (17)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>17 (8)</td>
<td>39 (26)</td>
</tr>
<tr>
<td>No diagnosis</td>
<td>18 (9)</td>
<td>45 (29)</td>
</tr>
</tbody>
</table>
Periodicity of fever matters: Episodic versus continuous FUO

<table>
<thead>
<tr>
<th>Condition</th>
<th>Recurrent Fever (n=45)</th>
<th>Continuous Fever (n=154)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td>4 (8.8%)</td>
<td>41 (26.6%)</td>
<td><0.025</td>
</tr>
<tr>
<td>Tumour</td>
<td>2 (4.4%)</td>
<td>12 (7.7%)</td>
<td>NS</td>
</tr>
<tr>
<td>Multisystem Disease</td>
<td>4 (8.8%)</td>
<td>38 (23.9%)</td>
<td><0.01</td>
</tr>
<tr>
<td>Drug-related fever</td>
<td>1 (2.2%)</td>
<td>5 (3.2%)</td>
<td>NS</td>
</tr>
<tr>
<td>Factitious Fever</td>
<td>1 (2.2%)</td>
<td>6 (3.8%)</td>
<td>NS</td>
</tr>
<tr>
<td>Habitual Hyperthermia</td>
<td>0</td>
<td>5 (3.2%)</td>
<td>NS</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>10*(22.0%)</td>
<td>19 (12.9%)</td>
<td>NS</td>
</tr>
<tr>
<td>No Diagnosis</td>
<td>23 (51.0%)</td>
<td>28 (18.1%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* Chron’s disease (3) familial mediterranean fever (2), extrinsic allergic alveolitis, ankylosing spondylitis, Castleman’s disease, inflammatory pseudotumor of lymph nodes, cholesterol embolism

Knockaert et al. Medicine 1993,72,184.
APPROACH TO THE ADULT WITH CLASSIC FUO
Initial approach

• Review the 'minimal diagnostic approach'
• Rule out the 'little 3'
MINIMUM DIAGNOSTIC EVALUATION

to qualify as FUO

Comprehensive history (including travel history, risk for venereal diseases, hobbies, pet animals and birds, etc.)

Comprehensive physical examination (including temporal arteries, rectal digital examination, etc.)

Routine blood tests (CBC including differential, ESR or CRP, electrolytes, renal and hepatic tests, CK and LDH)

Microscopic urinalysis

Cultures of blood, urine other normally sterile compartments if indicated, e.g. joints, pleura, cerebrospinal fluid

Chest radiograph

Abdominal (including pelvic) ultrasonography

Antinuclear and antineutrophilic cytoplasmic antibodies, rheumatoid factor

Tuberculin skin test

Serological tests directed by local epidemiological data

Further evaluation directed by abnormalities detected by above test; e.g.

- HIV antibodies depending on detailed history
- CMV-IgM and EBV serology in case of abnormal differential WBC count
- Abdominal or chest helical CT scan
- Echocardiography in case of cardiac murmur
- etc.

D Knockaert J Int med 2003;253:263
Causes of FUO: big & little 3

Big three
- Infections
- Malignancies
- NIID’s

Little three
- Drug fever
- Factitious fever
- ‘Habitual hyperthermia’
Rule out the little 3

• Rule out factitious fever: document the fever.

• Rule out habitual hyperthermia: temperature chart & settings

• Rule out drug fever: stop all nonessential medications
SUTTON'S LAW

"Look where the money is!"

$$$$

'do not carry out a battery of "routine" examinations in a conventional sequence'

Willie Sutton °1901- +1980
SUTTON'S LAW
What if ‘potentially diagnostic clues’ are absent or prove to be misleading?

- Total body inflammation tracer
- Therapeutic trials
- Wait and see
'WHOLE BODY INFLAMMATION TRACER SCINTIGRAPHY'

FDG-PET scintigraphy:
Large vessel vasculitis

FDG-PET scintigraphy:
Foreign body infection (osteosynthesis)
Beware of blind selective tests

- Selected tests are indicated in case of individual suspicion, to confirm the diagnosis (biopsy!, culture!); not as a routine ('fishing expedition')
 - Endoscopic techniques (e.g., GI, bronchoscopy)
 - Selective radiographs (e.g., of teeth, sinuses, sacroiliac joints)
 - Contrast studies (e.g., GI, arteriography)
 - Invasive studies (mediastinoscopy, thoracoscopy, laparoscopy)
 - Blind punctures (bone marrow, liver, lumbar puncture)
- Consider less invasive techniques (e.g., EBUS, echoendoscopy)
- Exception to the rule: temporal artery biopsy in 50+
Therapeutic trials in classic FUO

- Therapeutic trails are seldom diagnostically rewarding and tend to obscure rather than to illuminate.
- Symptomatic: NSAID
- Therapeutic trail to be considered in case of deterioration
 * Antibiotics:
 - Broad spectrum antibiotics: stop if no defervescence after 3 days.
 - Consider tetracyclines (or macrolides)
 * Antituberculosis therapy: strongly consider in case of clinical deterioration.
 * Corticosteroids:
 - Do not start too early
 - Consider adding antituberculosis therapy.
Approach to FUO

- 'Total body inflammation tracer scintigraphy'
- Therapeutic trails
- *Wait-and-see-strategy*
Prognosis of classical FUO

• ~ Underlying disease
 - e.g.: long-term survivors
 • 9% of patients with malignancies
 • 78% of patients with infections
 • 88% of patients in other categories
 Larson et al. Medicine 1982;61:269

• Hematological malignancies: 12% of diagnoses ≈ 60% of deaths
 Vanderschueren et al. Arch Intern Med 2003;163:1033

• Most patients who left hospital without diagnosis did remarkably well.
Evolution of fever in FUO patients discharged without diagnosis (n=49)

- Spontaneous resolution during or shortly after hospitalisation: n=31
- Continuous or recurrent fever (> 3m after discharge): n=18
 - “cured”: 10
 3 treated with corticosteroids
 - Persistent fevers: 8
 - Treated with corticosteroids (n=1)
 - Treated with NSAIDs (n=6)
 - Refused new investigation and died (n=1)
Figuur 2. Diagnostisch algoritme bij febriliteit; (*) bepaling van: BSE, C-reactief proteïne, Hb, trombocyten, leukocyten met differentiatie, natrium, kalium, creatinine, totaal eiwit, eiwit-elettroforese, alkalische fosfatase, aspartaataminotransferase (ASAT), alanineaminotransferase (ALT), lactaatdehydrogenase, creatinekinase, antinucleaire antistoffen, reumafactor, urinesediment; uitvoering van bloedkweek (3 maal), urinewas, thoraxröntgenfoto, echografie van het abdomen en mantouxtest; †(†) vervolgonderzoek: fundoscoopie, CT van thorax en abdomen, beeenmergbiopsie en bij patiënten ouder dan 55 jaar A.-temporalisbiopsie; (‡) proefbehandeling: antibiotica, tuberculostatica, corticosteroïden. PDC = potentieel diagnostische 'clues': alle lokaliserende klachten, symptomen en afwijkingen in het aanvullend onderzoek die in de richting wijzen van een bepaalde diagnose (voorbeeld: lymfadenopathie bij een uiteindelijke diagnose van de ziekte van Hodgkin); FDG-PET = 18F-fludeoxyglucose-positronemissietomografie.
“... many patients are placed in the FUO category because the attending physicians overlook, disregard or reject an obvious clue. No malice is implied by this observation; it simply means that clinicians, being human instruments, are far from perfect.

In order to mitigate the frequency and magnitude of these human errors, clinicians have to work that much harder. This means going over the patient again and again, repeating the history and physical examination, reviewing the chart, discussing the problem with colleagues in order to glean new ideas, and spending time in quiet contemplation of the clinical enigma.

The approach to the patient with FUO is not to bring on yet another barrage of tests, some of which might be painful and all of which probably are expensive, nor to douse the patient with antimicrobials or to subject him to exploratory surgery, in the absence of clinical clues and only as a last resort. There is no substitute for observing the patient, talking to him and thinking about him.”

Conclusion

• FUO remains a challenge
 ‘Some fevers remain of unknown origin and represent a source for humility on the part of the diagnostician, but may at the same time serve as an impetus for continued research.’

• Keep in mind
 - The diagnostic spectrum
 - ‘Big three’ – ‘Little three’
 - Common causes are frequent.
 - Local epidemiology

• ‘Go where the money is’.
 When ‘potentially diagnostic clues’ are absent or misleading, ‘return to basics’, ‘wait and see’ and/or consider an ‘inflammation tracer’.